If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-19x-3=0
a = 8; b = -19; c = -3;
Δ = b2-4ac
Δ = -192-4·8·(-3)
Δ = 457
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{457}}{2*8}=\frac{19-\sqrt{457}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{457}}{2*8}=\frac{19+\sqrt{457}}{16} $
| z+7=26 | | r^2=7r+6 | | 10s-40=-127 | | 5x-6=3(x+7 | | 2v+8=8 | | p2+3p-28=0 | | 12r=67 | | 2x+3=4x-7,x | | 25x-15=360 | | 5x^2+3x+2=50 | | 2x-1/8+1/4=5x/2 | | 2×+y=32 | | -4(6x+12)=-2(12+24) | | r2+9r+20=0 | | 2x/7=5-x-4 | | 7s+2=(4s+1) | | -10=x-(-3) | | 3t-14=43 | | 60x+25=3x-12 | | 3t+14=43 | | 140-25x=180 | | 1/10x=4-2x/5 | | t^2-4t=4 | | 50-5x=180 | | 16-z=13 | | p2+5p-6=0 | | z−612=-512 | | 25/x=12,5 | | 2q+431=867 | | 5x-153=6x+56 | | 12x+26=6x+98 | | 15y-20=100.y |